This website requires JavaScript.
DOI: 10.1145/3568294.3580153

Unsupervised Motion Retargeting for Human-Robot Imitation

Louis Annabi (FlowersU2IS)Ziqi Ma (U2IS) ...+3 IMT Atlantique - INFO)
Jan 2024
0被引用
0笔记
摘要原文
This early-stage research work aims to improve online human-robot imitation by translating sequences of joint positions from the domain of human motions to a domain of motions achievable by a given robot, thus constrained by its embodiment. Leveraging the generalization capabilities of deep learning methods, we address this problem by proposing an encoder-decoder neural network model performing domain-to-domain translation. In order to train such a model, one could use pairs of associated robot and human motions. Though, such paired data is extremely rare in practice, and tedious to collect. Therefore, we turn towards deep learning methods for unpaired domain-to-domain translation, that we adapt in order to perform human-robot imitation.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答