This website requires JavaScript.

Fine boundary regularity for the singular fractional p-Laplacian

Antonio IannizzottoSunra Mosconi
Feb 2024
0被引用
0笔记
摘要原文
We study the boundary weighted regularity of weak solutions $u$ to a $s$-fractional $p$-Laplacian equation in a bounded smooth domain $\Omega$ with bounded reaction and nonlocal Dirichlet type boundary condition, in the singular case $p\in(1,2)$ and with $s\in(0,1)$. We prove that $u/{\rm d}_\Omega^s$ has a $\alpha$-H\"older continuous extension to the closure of $\Omega$, ${\rm d}_\Omega(x)$ meaning the distance of $x$ from the complement of $\Omega$. This result corresponds to that of ref. [28] for the degenerate case $p\ge 2$.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答