This website requires JavaScript.

Position Paper: Why the Shooting in the Dark Method Dominates Recommender Systems Practice; A Call to Abandon Anti-Utopian Thinking

David Rohde
Feb 2024
0被引用
0笔记
摘要原文
Applied recommender systems research is in a curious position. While there is a very rigorous protocol for measuring performance by A/B testing, best practice for finding a `B' to test does not explicitly target performance but rather targets a proxy measure. The success or failure of a given A/B test then depends entirely on if the proposed proxy is better correlated to performance than the previous proxy. No principle exists to identify if one proxy is better than another offline, leaving the practitioners shooting in the dark. The purpose of this position paper is to question this anti-Utopian thinking and argue that a non-standard use of the deep learning stacks actually has the potential to unlock reward optimizing recommendation.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答