This website requires JavaScript.

Some determinants involving quadratic residues modulo primes

Zhi-Wei Sun
Feb 2024
0被引用
0笔记
摘要原文
In this paper we evaluate several determinants involving quadratic residues modulo primes. For example, for any prime $p>3$ with $p\equiv3\pmod4$ and $a,b\in\mathbb Z$ with $p\nmid ab$, we prove that $$\det\left[1+\tan\pi\frac{aj^2+bk^2}p\right]_{1\le j,k\le\frac{p-1}2}=\begin{cases}-2^{(p-1)/2}p^{(p-3)/4}&\text{if}\ (\frac{ab}p)=1, \\p^{(p-3)/4}&\text{if}\ (\frac{ab}p)=-1,\end{cases}$$ where $(\frac{\cdot}p)$ denotes the Legendre symbol. We also pose some conjectures for further research.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答