This website requires JavaScript.
DOI: 10.1016/j.jmaa.2024.128172

Behavior of solutions to semilinear evolution inequalities in an annulus: the critical cases

Meiirkhan B. BorikhanovBerikbol T. Torebek
Feb 2024
0被引用
0笔记
摘要原文
In the present paper, we consider the parabolic and hyperbolic inequalities with a singular potentials and with a critical nonlinearities in the annulus domain. The problems are studied with Neumann-type and Dirichlet-type boundary conditions on the boundary. Moreover, we study the systems of problems too. We have proved that the above problems are globally unsolvable in critical cases, thereby filling the gaps the recent results by Jleli and Samet in [J. Math. Anal. Appl. 514: 2 (2022)] and in [Anal. Math. Phys. 12: 90 (2022)]. Proofs are carried out using the method of test functions with logarithmic arguments, which is being developed for the first time in bounded domains.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答