This website requires JavaScript.

Towards Uncertainty-Aware Language Agent

Jiuzhou HanWray BuntineEhsan Shareghi
Feb 2024
0被引用
0笔记
摘要原文
While Language Agents have achieved promising success by placing Large Language Models at the core of a more versatile design that dynamically interacts with the external world, the existing approaches neglect the notion of uncertainty during these interactions. We present the Uncertainty-Aware Language Agent (UALA), a framework that orchestrates the interaction between the agent and the external world using uncertainty quantification. Compared with other well-known counterparts like ReAct, our extensive experiments across 3 representative tasks (HotpotQA, StrategyQA, MMLU) and various LLM sizes demonstrate that UALA brings a significant improvement of performance, while having a substantially lower reliance on the external world (i.e., reduced number of tool calls and tokens). Our analyses provide various insights including the great potential of UALA compared with agent fine-tuning, and underscore the unreliability of verbalised confidence of LLMs as a proxy for uncertainty.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答