This website requires JavaScript.

Cartagena Logic

Siiri Kivim\"akiJouko V\"a\"an\"anenAndr\'es Villaveces
Feb 2024
0被引用
0笔记
摘要原文
We introduce a new kind of infinitary logic that we call Boolean expansion of ${\mathcal L}_{\kappa \kappa}$. This logic involves a new kind of variable, that we call generalised Boolean variable. These variables range over the powerset of a cardinal number in a way reminiscent of random variables. From this Boolean expansion, we extract a traditional infinitary logic, called Cartagena logic. We prove several model-theoretic properties of Cartagena logic, and give multiple examples of its expressive power. The main result is that Cartagena logic is a good syntactically defined approximation to Shelah's infinitary ${\mathcal L}^1_\kappa$. The latter is not known to have a generative syntax, while Cartagena logic does have a very clear one.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答