This website requires JavaScript.
DOI: 10.2989/16073606.2023.2274580

The number of distinguishing colorings of a Cartesian product graph

Saeid AlikhaniMohammad Hadi Shekarriz
Feb 2024
0被引用
0笔记
摘要原文
A vertex coloring is called distinguishing if the identity is the only automorphism that can preserve it. The distinguishing threshold $\theta(G)$ of a graph $G$ is the minimum number of colors $k$ required that any arbitrary $k$-coloring of $G$ is distinguishing. In this paper, we calculate the distinguishing threshold of a Cartesian product graph. Moreover, we calculate the number of non-equivalent distinguishing colorings of grids.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答