This website requires JavaScript.

Analyzing Neural Network-Based Generative Diffusion Models through Convex Optimization

Fangzhao ZhangMert Pilanci
Feb 2024
0被引用
0笔记
摘要原文
Diffusion models are becoming widely used in state-of-the-art image, video and audio generation. Score-based diffusion models stand out among these methods, necessitating the estimation of score function of the input data distribution. In this study, we present a theoretical framework to analyze two-layer neural network-based diffusion models by reframing score matching and denoising score matching as convex optimization. Though existing diffusion theory is mainly asymptotic, we characterize the exact predicted score function and establish the convergence result for neural network-based diffusion models with finite data. This work contributes to understanding what neural network-based diffusion model learns in non-asymptotic settings.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答