This website requires JavaScript.

Pointwise decay for radial solutions of the Schr\"odinger equation with a repulsive Coulomb potential

Adam BlackEbru ToprakBruno VergaraJiahua Zou
Feb 2024
0被引用
0笔记
摘要原文
We study the long-time behavior of solutions to the Schr\"odinger equation with a repulsive Coulomb potential on $\mathbb{R}^3$ for spherically symmetric initial data. Our approach involves computing the distorted Fourier transform of the action of the associated Hamiltonian $H=-\Delta+\frac{q}{|x|}$ on radial data $f$, which allows us to explicitly write the evolution $e^{itH}f$. A comprehensive analysis of the kernel is then used to establish that, for large times, $\|e^{i t H}f\|_{L^{\infty}} \leq C t^{-\frac{3}{2}}\|f\|_{L^1}$. Our analysis of the distorted Fourier transform is expected to have applications to other long-range repulsive problems.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答