This website requires JavaScript.

On the lifting and reconstruction of nonlinear systems with multiple invariant sets

Shaowu PanKarthik Duraisamy
Feb 2024
0被引用
0笔记
摘要原文
The Koopman operator provides a linear perspective on non-linear dynamics by focusing on the evolution of observables in an invariant subspace. Observables of interest are typically linearly reconstructed from the Koopman eigenfunctions. Despite the broad use of Koopman operators over the past few years, there exist some misconceptions about the applicability of Koopman operators to dynamical systems with more than one disjoint invariant sets (e.g., basins of attractions from isolated fixed points). In this work, we first provide a simple explanation for the mechanism of linear reconstruction-based Koopman operators of nonlinear systems with multiple disjoint invariant sets. Next, we discuss the use of discrete symmetry among such invariant sets to construct Koopman eigenfunctions in a data efficient manner. Finally, several numerical examples are provided to illustrate the benefits of exploiting symmetry for learning the Koopman operator.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答