This website requires JavaScript.

High-Dimensional Independence Testing via Maximum and Average Distance Correlations

Cencheng ShenYuexiao Dong
Feb 2024
0被引用
0笔记
摘要原文
This paper introduces and investigates the utilization of maximum and average distance correlations for multivariate independence testing. We characterize their consistency properties in high-dimensional settings with respect to the number of marginally dependent dimensions, assess the advantages of each test statistic, examine their respective null distributions, and present a fast chi-square-based testing procedure. The resulting tests are non-parametric and applicable to both Euclidean distance and the Gaussian kernel as the underlying metric. To better understand the practical use cases of the proposed tests, we evaluate the empirical performance of the maximum distance correlation, average distance correlation, and the original distance correlation across various multivariate dependence scenarios, as well as conduct a real data experiment to test the presence of various cancer types and peptide levels in human plasma.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答