This website requires JavaScript.

Inverse homogenization problem for the Drichlet problem for Poisson equation for $W^{-1,\infty}$ potential

Hiroto Ishida
Feb 2024
0被引用
0笔记
摘要原文
We consider Poisson problems $-\Delta u^\varepsilon=f$ on perforated domains, and characterize the limit of $u^\varepsilon$ as the solution to $(-\Delta+\mu)u=f$ on domain $\Omega\subset\mathbb{R}^d$ with some potential $\mu\in W^{-1,\infty}(\Omega).$ It is known that $\mu$ is related to the capacity of holes when $\mu\in L^\infty(\Omega).$ In this paper, we characterize $\mu$ as the limit of the density of the capacity of holes also for many $\mu\in W^{-1,\infty}(\Omega).$ We apply the result for the inverse homogenization problem, i.e. we construct holes corresponding to the given potential $\mu\in L^d(\Omega)+L^\infty(\delta_S)$ where $\delta_S$ is a surface measure.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答