This website requires JavaScript.

BYOM: Building Your Own Multi-Task Model For Free

Weisen JiangBaijiong LinHan ShiYu ZhangZhenguo LiJames T. Kwok
Feb 2024
0被引用
0笔记
摘要原文
Recently, various merging methods have been proposed to build a multi-task model from task-specific finetuned models without retraining. However, existing methods suffer from a large performance deterioration compared to using multiple task-specific models. In this paper, we propose to inject task-specific knowledge into the merged model and design two parameter-efficient approaches (BYOM-FFT and BYOM-LoRA) to Build Your Own Multi-task model. BYOM-FFT is for merging fully finetuned models, while BYOM-LoRA is for LoRA-finetuned models. Both methods are data-free and computation-efficient. Extensive experiments on computer vision and natural language processing tasks show that the proposed BYOM methods outperform existing merging methods by a large margin. Moreover, BYOM-FFT is general and can be integrated into existing merging methods to further boost performance.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答