This website requires JavaScript.

Asymptotics of powers of random elements of compact Lie groups

Donnelly Phillips
Feb 2024
0被引用
0笔记
摘要原文
For a Haar-distributed element $H$ of a compact Lie group \(L\), Eric Rains proved that there is a natural number $D = D_L$ such that, for all $d\ge D$, the eigenvalue distribution of $H^d$ is fixed, and Rains described this fixed eigenvalue distribution explicitly. In the present paper we consider random elements $U$ of a compact Lie group with general distribution. In particular, we introduce a mild absolute continuity condition under which the eigenvalue distribution of powers of $U$ converges to that of $H^D$. Then, rather than the eigenvalue distribution, we consider the limiting distribution of $U^d$ itself.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答