This website requires JavaScript.

Almost all orbits of an analogue of the Collatz map on the reals attain bounded values

Manuel Inselmann
Jan 2024
0被引用
0笔记
摘要原文
Motivated by a balanced ternary representation of the Collatz map we define the map $C_\mathbb{R}$ on the positive real numbers by setting $C_\mathbb{R}(x)=\frac{1}{2}x$ if $[x]$ is even and $C_\mathbb{R}(x)=\frac{3}{2}x$ if $[x]$ is odd, where $[x]$ is defined by $[x]\in\mathbb{Z}$ and $x-[x]\in(-\frac{1}{2},\frac{1}{2}]$. We show that there exists a constant $K>0$ such that the set of $x$ fulfilling $\liminf_{n\in\mathbb{N}}C_\mathbb{R}^n(x)\leq K$ is Lebesgue-co-null. We also show that for any $\epsilon>0$ the set of $x$ for which $ (\frac{3^{\frac{1}{2}}}{2})^kx^{1-\epsilon}\leq C_\mathbb{R}^k(x)\leq (\frac{3^{\frac{1}{2}}}{2})^kx^{1+\epsilon}$ for all $0\leq k\leq \frac{1}{1-\frac{\log_23}{2}}\log_2x$ is large for a suitable notion of largeness.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答