This website requires JavaScript.

Random walks on Coxeter interchange graphs

Matthew BucklandBrett KolesnikRivka MitchellTomasz Przyby{\l}owski
Jan 2024
0被引用
0笔记
摘要原文
A tournament is an orientation of a graph. Vertices are players and edges are games, directed away from the winner. Kannan, Tetali and Vempala and McShine showed that tournaments with given score sequence can be rapidly sampled, via simple random walks on the interchange graphs of Brualdi and Li. These graphs are generated by the cyclically directed triangle, in the sense that traversing an edge corresponds to the reversal of such a triangle in a tournament. We study Coxeter tournaments on Zaslavsky's signed graphs. These tournaments involve collaborative and solitaire games, as well as the usual competitive games. The interchange graphs are richer in complexity, as a variety of other generators are involved. We prove rapid mixing by an intricate application of Bubley and Dyer's method of path coupling, using a delicate re-weighting of the graph metric. Geometric connections with the Coxeter permutahedra introduced by Ardila, Castillo, Eur and Postnikov are discussed.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答