This website requires JavaScript.

The point scatterer approximation for wave dynamics

Andrea MantileAndrea Posilicano
Jan 2024
0被引用
0笔记
摘要原文
Given an open, bounded and connected set $\Omega\subset\mathbb{R}^{3}$ and its rescaling $\Omega_{\varepsilon}$ of size $\varepsilon\ll 1$, we consider the solutions of the Cauchy problem for the inhomogeneous wave equation $$ (\varepsilon^{-2}\chi_{\Omega_{\varepsilon}}+\chi_{\mathbb{R}^{3}\backslash\Omega_{\varepsilon}})\partial_{tt}u=\Delta u+f $$ with initial data and source supported outside $\Omega_{\varepsilon}$; here, $\chi_{S}$ denotes the characteristic function of a set $S$. We provide the first-order $\varepsilon$-corrections with respect to the solutions of the inhomogeneous free wave equation and give space-time estimates on the remainders in the $L^{\infty}((0,1/\varepsilon^{\tau}),L^{2}(\mathbb{R}^{3})) $-norm. Such corrections are explicitly expressed in terms of the eigenvalues and eigenfunctions of the Newton potential operator in $L^{2}(\Omega)$ and provide an effective dynamics describing a legitimate point scatterer approximation in the time domain.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答