A Hamilton-Jacobi approach to nonlocal kinetic equations

Nadia LoyBenoit Perthame

Nadia LoyBenoit Perthame

Jan 2024

0被引用

0笔记

摘要原文

Highly concentrated patterns have been observed in a spatially heterogeneous, nonlocal, model of BGK type implementing a velocity-jump process. We study both a linear and a nonlinear case and describe the concentration profile. In particular, we analyse a hyperbolic (or high frequency) regime that can be interpreted both as a local (microscopic) or as a nonlocal (macroscopic) rescaling. We consider a Hopf-Cole transform and derive a Hamilton-Jacobi equation. The concentrations are then explained as a consequence of the stationary points of the Hamiltonian that is spatially heterogeneous like the velocity-jump process. After revising the classical hydrodynamic limits for the aggregate quantities and the eikonal equation that can be derived from those with a Hopf-Cole transform, we find that the Hamilton-Jacobi equation is a second order approximation of the eikonal equation in the limit of small diffusivity. For nonlinear turning kernels, the Hopf-Cole transform allows to study the stability of the possible homogeneous configurations and of patterns and the results of a linear stability analysis previously obtained are found and extended to a nonlinear regime. In particular, it is shown that instability (pattern formation) occurs when the Hamiltonian is convex-concave.