This website requires JavaScript.

Quantum Transfer Learning with Adversarial Robustness for Classification of High-Resolution Image Datasets

Amena KhatunMuhammad Usman
Jan 2024
0被引用
0笔记
摘要原文
The application of quantum machine learning to large-scale high-resolution image datasets is not yet possible due to the limited number of qubits and relatively high level of noise in the current generation of quantum devices. In this work, we address this challenge by proposing a quantum transfer learning (QTL) architecture that integrates quantum variational circuits with a classical machine learning network pre-trained on ImageNet dataset. Through a systematic set of simulations over a variety of image datasets such as Ants & Bees, CIFAR-10, and Road Sign Detection, we demonstrate the superior performance of our QTL approach over classical and quantum machine learning without involving transfer learning. Furthermore, we evaluate the adversarial robustness of QTL architecture with and without adversarial training, confirming that our QTL method is adversarially robust against data manipulation attacks and outperforms classical methods.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答