This website requires JavaScript.

ActDroid: An active learning framework for Android malware detection

Ali MuzaffarHani Ragab HassenHind ZantoutMichael A Lones
Jan 2024
0被引用
0笔记
摘要原文
The growing popularity of Android requires malware detection systems that can keep up with the pace of new software being released. According to a recent study, a new piece of malware appears online every 12 seconds. To address this, we treat Android malware detection as a streaming data problem and explore the use of active online learning as a means of mitigating the problem of labelling applications in a timely and cost-effective manner. Our resulting framework achieves accuracies of up to 96\%, requires as little of 24\% of the training data to be labelled, and compensates for concept drift that occurs between the release and labelling of an application. We also consider the broader practicalities of online learning within Android malware detection, and systematically explore the trade-offs between using different static, dynamic and hybrid feature sets to classify malware.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答