This website requires JavaScript.

Rigidity of compact quasi-Einstein manifolds with boundary

Johnatan CostaErnani Ribeiro JrDetang Zhou
Jan 2024
0被引用
0笔记
摘要原文
In this article, we investigate the geometry of compact quasi-Einstein manifolds with boundary. We establish the possible values for the constant scalar curvature of a compact quasi-Einstein manifold with boundary. Moreover, we show that a $3$-dimensional simply connected compact $m$-quasi-Einstein manifold with boundary and constant scalar curvature must be isometric, up to scaling, to either the standard hemisphere $\mathbb{S}^{3}_{+}$, or the cylinder $\left[0,\frac{\sqrt{m}}{\sqrt{\lambda}}\,\pi\right]\times\mathbb{S}^2$ with the product metric. For dimension $n=4,$ we prove that a $4$-dimensional simply connected compact $m$-quasi-Einstein manifold $M^4$ with boundary and constant scalar curvature is isometric, up to scaling, to either the standard hemisphere $\mathbb{S}^{4}_{+},$ or the cylinder $\left[0,\frac{\sqrt{m}}{\sqrt{\lambda}}\,\pi\right]\times\mathbb{S}^3$ with the product metric, or the product space $\mathbb{S}^{2}_{+}\times\mathbb{S}^2$ with the doubly warped product metric. Other related results for arbitrary dimensions are also discussed.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答