This website requires JavaScript.

Learning Properties of Quantum States Without the I.I.D. Assumption

Omar FawziRichard KuengDamian MarkhamAadil Oufkir
Jan 2024
0被引用
0笔记
摘要原文
We develop a framework for learning properties of quantum states beyond the assumption of independent and identically distributed (i.i.d.) input states. We prove that, given any learning problem (under reasonable assumptions), an algorithm designed for i.i.d. input states can be adapted to handle input states of any nature, albeit at the expense of a polynomial increase in copy complexity. Furthermore, we establish that algorithms which perform non-adaptive incoherent measurements can be extended to encompass non-i.i.d. input states while maintaining comparable error probabilities. This allows us, among others applications, to generalize the classical shadows of Huang, Kueng, and Preskill to the non-i.i.d. setting at the cost of a small loss in efficiency. Additionally, we can efficiently verify any pure state using Clifford measurements, in a way that is independent of the ideal state. Our main techniques are based on de Finetti-style theorems supported by tools from information theory. In particular, we prove a new randomized local de Finetti theorem that can be of independent interest.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答