This website requires JavaScript.

# Block quantum dynamical semigroups of completely positive definite kernels

Jan 2024
0被引用
0笔记

Kolmogorov decomposition for a given completely positive definite kernel is a generalization of Paschke's GNS construction for the completely positive map. Using Kolmogorov decomposition, to every quantum dynamical semigroup (QDS) for completely positive definite kernels over a set $S$ on given $C^*$-algebra $\mathcal{A},$ we shall assign an inclusion system $F = (F_s)_{s\ge 0}$ of Hilbert bimodules over $\mathcal{A}$ with a generating unit $\xi^{\sigma}=(\xi^{\sigma}_s)_{s\ge 0}.$ Consider a von Neumann algebra $\mathcal{B}$, and let $\mathfrak{T}=(\mathfrak{T}_s)_{s\ge 0}$ be a QDS over a set $S$ on the algebra $M_2(\mathcal{B})$ with $\mathfrak{T}_s=\begin{pmatrix}\mathfrak{K}_{s,1} & \mathfrak{L}_s\\\mathfrak{L}_s^*& \mathfrak{K}_{s,2} \end{pmatrix}$ which acts block-wise. Further, suppose that $(F^i_s )_{s\ge 0}$ is the inclusion system affiliated to the diagonal QDS $(\mathfrak{K}_{s,i})_{s\ge 0}$ along with the generating unit $(\xi^{\sigma}_{s,i} )_{s\ge 0},$ $\sigma\in S,i\in \{1,2\}$, then we prove that there exists a unique contractive (weak) morphism $V = (V_s)_{s\ge 0}:F^2_s \to F^1_s$ such that $\mathfrak{L}_s^{\sigma,\sigma'}(b)=\langle \xi_{s,1}^{\sigma},V_s b\xi_{s,2}^{\sigma'}\rangle$ for every $\sigma',\sigma\in S$ and $b\in \mathcal{B}.$ We also study the semigroup version of a factorization theorem for $\mathfrak{K}$-families.

AI理解论文&经典十问