This website requires JavaScript.

Efficient numerical approximations for a non-conservative Nonlinear Schrodinger equation appearing in wind-forced ocean waves

Agissilaos AthanassoulisTheodoros KatsaounisIrene Kyza
Jan 2024
0被引用
0笔记
摘要原文
We consider a non-conservative nonlinear Schrodinger equation (NCNLS) with time-dependent coefficients, inspired by a water waves problem. This problem does not have mass or energy conservation, but instead mass and energy change in time under explicit balance laws. In this paper we extend to the particular NCNLS two numerical schemes which are known to conserve energy and mass in the discrete level for the cubic NLS. Both schemes are second oder accurate in time, and we prove that their extensions satisfy discrete versions of the mass and energy balance laws for the NCNLS. The first scheme is a relaxation scheme that is linearly implicit. The other scheme is a modified Delfour-Fortin-Payre scheme and it is fully implicit. Numerical results show that both schemes capture robustly the correct values of mass and energy, even in strongly non-conservative problems. We finally compare the two numerical schemes and discuss their performance.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答