This website requires JavaScript.
DOI: 10.1109/ICIP49359.2023.10222005

LATENTPATCH: A Non-Parametric Approach for Face Generation and Editing

Benjamin Samuth (UNICAENENSICAEN)Julien Rabin (ENSICAEN ...+4 UNICAEN)
Jan 2024
0被引用
0笔记
摘要原文
This paper presents LatentPatch, a new method for generating realistic images from a small dataset of only a few images. We use a lightweight model with only a few thousand parameters. Unlike traditional few-shot generation methods that finetune pre-trained large-scale generative models, our approach is computed directly on the latent distribution by sequential feature matching, and is explainable by design. Avoiding large models based on transformers, recursive networks, or self-attention, which are not suitable for small datasets, our method is inspired by non-parametric texture synthesis and style transfer models, and ensures that generated image features are sampled from the source distribution. We extend previous single-image models to work with a few images and demonstrate that our method can generate realistic images, as well as enable conditional sampling and image editing. We conduct experiments on face datasets and show that our simplistic model is effective and versatile.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答