This website requires JavaScript.

Online Algorithm for Node Feature Forecasting in Temporal Graphs

Aniq Ur RahmanJustin P. Coon
Jan 2024
0被引用
0笔记
摘要原文
In this paper, we propose an online algorithm "mspace" for forecasting node features in temporal graphs, which adeptly captures spatial cross-correlation among different nodes as well as the temporal autocorrelation within a node. The algorithm can be used for both probabilistic and deterministic multi-step forecasting, making it applicable for estimation and generation tasks. Comparative evaluations against various baselines, including graph neural network (GNN) based models and classical Kalman filters, demonstrate that mspace performs at par with the state-of-the-art and even surpasses them on some datasets. Importantly, mspace demonstrates consistent robustness across datasets with varying training sizes, a notable advantage over GNN-based methods requiring abundant training samples to learn the spatiotemporal trends in the data effectively. Therefore, employing mspace is advantageous in scenarios where the training sample availability is limited. Additionally, we establish theoretical bounds on multi-step forecasting error of mspace and show that it scales as $O(q)$ for $q$-step forecast.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答