This website requires JavaScript.

Dynamic Human Digital Twin Deployment at the Edge for Task Execution: A Two-Timescale Accuracy-Aware Online Optimization

Yuye YangYou ShiChangyan Yi ...+3 Xuemin (Sherman) Shen
Jan 2024
0被引用
1笔记
摘要原文
Human digital twin (HDT) is an emerging paradigm that bridges physical twins (PTs) with powerful virtual twins (VTs) for assisting complex task executions in human-centric services. In this paper, we study a two-timescale online optimization for building HDT under an end-edge-cloud collaborative framework. As a unique feature of HDT, we consider that PTs' corresponding VTs are deployed on edge servers, consisting of not only generic models placed by downloading experiential knowledge from the cloud but also customized models updated by collecting personalized data from end devices. To maximize task execution accuracy with stringent energy and delay constraints, and by taking into account HDT's inherent mobility and status variation uncertainties, we jointly and dynamically optimize VTs' construction and PTs' task offloading, along with communication and computation resource allocations. Observing that decision variables are asynchronous with different triggers, we propose a novel two-timescale accuracy-aware online optimization approach (TACO). Specifically, TACO utilizes an improved Lyapunov method to decompose the problem into multiple instant ones, and then leverages piecewise McCormick envelopes and block coordinate descent based algorithms, addressing two timescales alternately. Theoretical analyses and simulations show that the proposed approach can reach asymptotic optimum within a polynomial-time complexity, and demonstrate its superiority over counterparts.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答