This website requires JavaScript.

Multivariate Priors and the Linearity of Optimal Bayesian Estimators under Gaussian Noise

Leighton P. BarnesAlex DytsoJingbo LiuH. Vincent Poor
Jan 2024
0被引用
0笔记
摘要原文
Consider the task of estimating a random vector $X$ from noisy observations $Y = X + Z$, where $Z$ is a standard normal vector, under the $L^p$ fidelity criterion. This work establishes that, for $1 \leq p \leq 2$, the optimal Bayesian estimator is linear and positive definite if and only if the prior distribution on $X$ is a (non-degenerate) multivariate Gaussian. Furthermore, for $p > 2$, it is demonstrated that there are infinitely many priors that can induce such an estimator.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答