This website requires JavaScript.

Polynomial-depth quantum algorithm for computing matrix determinant

Alexander I. ZenchukWentao QiAsutosh KumarJunde Wu
Jan 2024
0被引用
0笔记
摘要原文
We propose an algorithm for calculating the determinant of a square matrix, and construct the quantum circuit realizing it, using multiqubit control gates (representable in terms of Toffoli gates, CNOTs and SWAPs), Hadamard transformations and $Z$-operators. Each row of the matrix is encoded as a pure state of some quantum system. The admitted matrix is therefore arbitrary up to the normalization of quantum states of those systems. The depth of the proposed algorithm is $O(N^3\log \, N)$ for the $N\times N$ matrix.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答