This website requires JavaScript.

Turbulent Threshold for Continuum Calogero-Moser Models

James HoganMatthew Kowalski
Jan 2024
0被引用
0笔记
摘要原文
We determine the sharp mass threshold for Sobolev norm growth for the focusing continuum Calogero--Moser model. It is known that below the mass of $2\pi$, solutions to this completely integrable model enjoy uniform-in-time $H^s$ bounds for all $s \geq 0$. In contrast, we show that for arbitrarily small $\varepsilon > 0$ there exists initial data $u_0 \in H^\infty_+$ of mass $2\pi + \varepsilon$ such that the corresponding maximal lifespan solution $u : (T_-, T_+) \times \mathbb{R} \to \mathbb{C}$ satisfies $\lim_{t \to T_\pm} \|u(t)\|_{H^s} = \infty$ for all $s > 0$. As part of our proof, we demonstrate an orbital stability statement for the soliton and a dispersive decay bound for solutions with suitable initial data.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答