This website requires JavaScript.

Dropout Concrete Autoencoder for Band Selection on HSI Scenes

Lei XuMete AhishaliMoncef Gabbouj
Jan 2024
0被引用
1笔记
摘要原文
Deep learning-based informative band selection methods on hyperspectral images (HSI) recently have gained intense attention to eliminate spectral correlation and redundancies. However, the existing deep learning-based methods either need additional post-processing strategies to select the descriptive bands or optimize the model indirectly, due to the parameterization inability of discrete variables for the selection procedure. To overcome these limitations, this work proposes a novel end-to-end network for informative band selection. The proposed network is inspired by the advances in concrete autoencoder (CAE) and dropout feature ranking strategy. Different from the traditional deep learning-based methods, the proposed network is trained directly given the required band subset eliminating the need for further post-processing. Experimental results on four HSI scenes show that the proposed dropout CAE achieves substantial and effective performance levels outperforming the competing methods.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答