This website requires JavaScript.

Refined Inverse Rigging: A Balanced Approach to High-fidelity Blendshape Animation

Stevo Rackovi\'cCl\'audia SoaresDu\v{s}an Jakoveti\'c
Jan 2024
0被引用
0笔记
摘要原文
In this paper, we present an advanced approach to solving the inverse rig problem in blendshape animation, using high-quality corrective blendshapes. Our algorithm introduces novel enhancements in three key areas: ensuring high data fidelity in reconstructed meshes, achieving greater sparsity in weight distributions, and facilitating smoother frame-to-frame transitions. While the incorporation of corrective terms is a known practice, our method differentiates itself by employing a unique combination of $l_1$ norm regularization for sparsity and a temporal smoothness constraint through roughness penalty, focusing on the sum of second differences in consecutive frame weights. A significant innovation in our approach is the temporal decoupling of blendshapes, which permits simultaneous optimization across entire animation sequences. This feature sets our work apart from existing methods and contributes to a more efficient and effective solution. Our algorithm exhibits a marked improvement in maintaining data fidelity and ensuring smooth frame transitions when compared to prior approaches that either lack smoothness regularization or rely solely on linear blendshape models. In addition to superior mesh resemblance and smoothness, our method offers practical benefits, including reduced computational complexity and execution time, achieved through a novel parallelization strategy using clustering methods. Our results not only advance the state of the art in terms of fidelity, sparsity, and smoothness in inverse rigging but also introduce significant efficiency improvements. The source code will be made available upon acceptance of the paper.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答