This website requires JavaScript.

Surfaces with central configuration and Dulac's problem for a three dimensional isolated Hopf singularity

Nuria CorralMar\'ia Mart\'in VegaFernando Sanz S\'anchez
Jan 2024
0被引用
0笔记
摘要原文
Let $\xi$ be a real analytic vector field with an elementary isolated singularity at $0\in \mathbb{R}^3$ and eigenvalues $\pm bi,c$ with $b,c\in \mathbb{R}$ and $b\neq 0$. We prove that all cycles of $\xi$ in a sufficiently small neighborhood of $0$, if they exist, are contained in a finite number of subanalytic invariant surfaces entirely composed by a continuum of cycles. In particular, we solve Dulac's problem, i.e. finiteness of limit cycles, for such vector fields.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答