This website requires JavaScript.

Semi-parametric Expert Bayesian Network Learning with Gaussian Processes and Horseshoe Priors

Yidou WengFinale Doshi-Velez
Jan 2024
0被引用
0笔记
摘要原文
This paper proposes a model learning Semi-parametric relationships in an Expert Bayesian Network (SEBN) with linear parameter and structure constraints. We use Gaussian Processes and a Horseshoe prior to introduce minimal nonlinear components. To prioritize modifying the expert graph over adding new edges, we optimize differential Horseshoe scales. In real-world datasets with unknown truth, we generate diverse graphs to accommodate user input, addressing identifiability issues and enhancing interpretability. Evaluation on synthetic and UCI Liver Disorders datasets, using metrics like structural Hamming Distance and test likelihood, demonstrates our models outperform state-of-the-art semi-parametric Bayesian Network model.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答