This website requires JavaScript.

Efficient solution of ill-posed integral equations through averaging

Michael GriebelTim Jahn
Jan 2024
0被引用
0笔记
摘要原文
This paper discusses the error and cost aspects of ill-posed integral equations when given discrete noisy point evaluations on a fine grid. Standard solution methods usually employ discretization schemes that are directly induced by the measurement points. Thus, they may scale unfavorably with the number of evaluation points, which can result in computational inefficiency. To address this issue, we propose an algorithm that achieves the same level of accuracy while significantly reducing computational costs. Our approach involves an initial averaging procedure to sparsify the underlying grid. To keep the exposition simple, we focus only on one-dimensional ill-posed integral equations that have sufficient smoothness. However, the approach can be generalized to more complicated two- and three-dimensional problems with appropriate modifications.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答