This website requires JavaScript.

Probabilistic Guarantees of Stochastic Recursive Gradient in Non-Convex Finite Sum Problems

Yanjie ZhongJiaqi LiSoumendra Lahiri
Jan 2024
0被引用
0笔记
摘要原文
This paper develops a new dimension-free Azuma-Hoeffding type bound on summation norm of a martingale difference sequence with random individual bounds. With this novel result, we provide high-probability bounds for the gradient norm estimator in the proposed algorithm Prob-SARAH, which is a modified version of the StochAstic Recursive grAdient algoritHm (SARAH), a state-of-art variance reduced algorithm that achieves optimal computational complexity in expectation for the finite sum problem. The in-probability complexity by Prob-SARAH matches the best in-expectation result up to logarithmic factors. Empirical experiments demonstrate the superior probabilistic performance of Prob-SARAH on real datasets compared to other popular algorithms.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答