This website requires JavaScript.

Neural network variational Monte Carlo for positronic chemistry

G. CassellaW.M.C. FoulkesD. PfauJ.S. Spencer
Jan 2024
0被引用
0笔记
摘要原文
Quantum chemical calculations of the ground-state properties of positron-molecule complexes are challenging. The main difficulty lies in employing an appropriate basis set for representing the coalescence between electrons and a positron. Here, we tackle this problem with the recently developed Fermionic neural network (FermiNet) wavefunction, which does not depend on a basis set. We find that FermiNet produces highly accurate, in some cases state-of-the-art, ground-state energies across a range of atoms and small molecules with a wide variety of qualitatively distinct positron binding characteristics. We calculate the binding energy of the challenging non-polar benzene molecule, finding good agreement with the experimental value, and obtain annihilation rates which compare favourably with those obtained with explicitly correlated Gaussian wavefunctions. Our results demonstrate a generic advantage of neural network wavefunction-based methods and broaden their applicability to systems beyond the standard molecular Hamiltonian.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答