This website requires JavaScript.

A Deformation Quantization for Non-Flat Spacetimes and Applications to QFT

Albert Much
Jan 2024
0被引用
0笔记
摘要原文
We provide a deformation quantization, in the sense of Rieffel, for \textit{all} globally hyperbolic spacetimes with a Poisson structure. The Poisson structures have to satisfy Fedosov type requirements in order for the deformed product to be associative. We apply the novel deformation to quantum field theories and their respective states and we prove that the deformed state (i.e.\ a state in non-commutative spacetime) has a singularity structure resembling Minkowski, i.e.\ is \textit{Hadamard}, if the undeformed state is Hadamard. This proves that the Hadamard condition, and hence the quantum field theoretical implementation of the equivalence principle is a general concept that holds in spacetimes with quantum features (i.e. a non-commutative spacetime).
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答