This website requires JavaScript.

On the stability of the Yamabe invariant of $S^3$

Liam MazurowskiXuan Yao
Feb 2024
0被引用
0笔记
摘要原文
Let $g$ be a complete, asymptotically flat metric on $\mathbb{R}^3$ with vanishing scalar curvature. Moreover, assume that $(\mathbb{R}^3,g)$ supports a nearly Euclidean $L^2$ Sobolev inequality. We prove that $(\mathbb{R}^3,g)$ must be close to Euclidean space with respect to the $d_p$-distance defined by Lee-Naber-Neumayer. We then discuss some consequences for the stability of the Yamabe invariant of $S^3$. More precisely, we show that if such a manifold $(\mathbb{R}^3,g)$ carries a suitably normalized, positive solution to $\Delta_g w + \lambda w^5 = 0$ then $w$ must be close, in a certain sense, to a conformal factor that transforms Euclidean space into a round sphere.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答