This website requires JavaScript.

Transitive $(q-1)$-fold packings of $\rm{PG}_n(q)$

Daniel R. Hawtin
Feb 2024
0被引用
0笔记
摘要原文
A $t$-fold packing of a projective space $\rm{PG}_n(q)$ is a collection $\mathcal{P}$ of line-spreads such that each line of $\rm{PG}_n(q)$ occurs in precisely $t$ spreads in $\mathcal{P}$. A $t$-fold packing $\mathcal{P}$ is transitive if a subgroup of $\rm{P\Gamma L}_{n+1}(q)$ preserves and acts transitively on $\mathcal{P}$. We give a construction for a transitive $(q-1)$-fold packing of $\rm{PG}_n(q)$, where $q=2^k$, for any odd positive integers $n$ and $k$, such that $n\geq 3$. This generalises a construction of Baker from 1976 for the case $q=2$.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答