This website requires JavaScript.

EuroPED-NN: Uncertainty aware surrogate model

A. Panera AlvarezA. HoA. JarvinenS. SaarelmaS. WiesenJET Contributors
Feb 2024
0被引用
0笔记
摘要原文
This work successfully generates uncertainty aware surrogate models, via the Bayesian neural network with noise contrastive prior (BNN-NCP) technique, of the EuroPED plasma pedestal model using data from the JET-ILW pedestal database and subsequent model evaluations. All this conform EuroPED-NN. The BNN-NCP technique is proven to be a good fit for uncertainty aware surrogate models, matching the output results as a regular neural network, providing prediction's confidence as uncertainties, and highlighting the out of distribution (OOD) regions using surrogate model uncertainties. This provides critical insights into model robustness and reliability. EuroPED-NN has been physically validated, first, analyzing electron density $n_e\!\left(\psi_{\text{pol}}=0.94\right)$ with respect to increasing plasma current, $I_p$, and second, validating the $\Delta-\beta_{p,ped}$ relation associated with the EuroPED model. Affirming the robustness of the underlying physics learned by the surrogate model.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答