This website requires JavaScript.

Testing side-channel security of cryptographic implementations against future microarchitectures

Gilles BartheMarcel B\"ohmeSunjay Cauligi ...+6 Yuval Yarom
Feb 2024
0被引用
0笔记
摘要原文
How will future microarchitectures impact the security of existing cryptographic implementations? As we cannot keep reducing the size of transistors, chip vendors have started developing new microarchitectural optimizations to speed up computation. A recent study (Sanchez Vicarte et al., ISCA 2021) suggests that these optimizations might open the Pandora's box of microarchitectural attacks. However, there is little guidance on how to evaluate the security impact of future optimization proposals. To help chip vendors explore the impact of microarchitectural optimizations on cryptographic implementations, we develop (i) an expressive domain-specific language, called LmSpec, that allows them to specify the leakage model for the given optimization and (ii) a testing framework, called LmTest, to automatically detect leaks under the specified leakage model within the given implementation. Using this framework, we conduct an empirical study of 18 proposed microarchitectural optimizations on 25 implementations of eight cryptographic primitives in five popular libraries. We find that every implementation would contain secret-dependent leaks, sometimes sufficient to recover a victim's secret key, if these optimizations were realized. Ironically, some leaks are possible only because of coding idioms used to prevent leaks under the standard constant-time model.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答