This website requires JavaScript.

Bialgebraic Reasoning on Higher-Order Program Equivalence

Sergey GoncharovStefan MiliusStelios TsampasHenning Urbat
Feb 2024
0被引用
0笔记
摘要原文
Logical relations constitute a key method for reasoning about contextual equivalence of programs in higher-order languages. They are usually developed on a per-case basis, with a new theory required for each variation of the language or of the desired notion of equivalence. In the present paper we introduce a general construction of (step-indexed) logical relations at the level of Higher-Order Mathematical Operational Semantics, a highly parametric categorical framework for modeling the operational semantics of higher-order languages. Our main result asserts that for languages whose weak operational model forms a lax bialgebra, the logical relation is automatically sound for contextual equivalence. Our abstract theory is shown to instantiate to combinatory logics and $\lambda$-calculi with recursive types, and to different flavours of contextual equivalence.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答