This website requires JavaScript.

Actor Identification in Discourse: A Challenge for LLMs?

Ana Bari\'cSean PapaySebastian Pad\'o
Feb 2024
0被引用
0笔记
摘要原文
The identification of political actors who put forward claims in public debate is a crucial step in the construction of discourse networks, which are helpful to analyze societal debates. Actor identification is, however, rather challenging: Often, the locally mentioned speaker of a claim is only a pronoun ("He proposed that [claim]"), so recovering the canonical actor name requires discourse understanding. We compare a traditional pipeline of dedicated NLP components (similar to those applied to the related task of coreference) with a LLM, which appears a good match for this generation task. Evaluating on a corpus of German actors in newspaper reports, we find surprisingly that the LLM performs worse. Further analysis reveals that the LLM is very good at identifying the right reference, but struggles to generate the correct canonical form. This points to an underlying issue in LLMs with controlling generated output. Indeed, a hybrid model combining the LLM with a classifier to normalize its output substantially outperforms both initial models.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答