This website requires JavaScript.

$\mathcal{N}{=}\,8$ invariant interaction of dynamical and semi-dynamical $\mathcal{N}{=}\,4$ multiplets

Sergey FedorukEvgeny Ivanov
Feb 2024
0被引用
0笔记
摘要原文
We present a new model of $\mathcal{N}{=}\,8$ mechanics with semi-dynamic supermultiplets. The model is constructed as an interaction of $\mathcal{N}{=}\,4$ supermultiplets which carry an implicit $\mathcal{N}{=}\,4$ supersymmetry. The initial field content consists of three dynamical $({\bf 1, 4, 3})$ multiplets: one bosonic and two fermionic. To ensure implicit $\mathcal{N}{=}\,4$ supersymmetry, we introduce the superfields describing three semi-dynamical $({\bf 4, 4, 0})$ multiplets: one fermionic and two bosonic. To avoid the second-order Lagrangian for fermions from the fermionic $({\bf 1, 4, 3})$ multiplets, the conversion of their velocities into new auxiliary fields is carried out. After conversion, these multiplets turn into semi-dynamical mirror $({\bf 4, 4, 0})$ multiplets without non-canonical terms in the $\mathcal{N}{=}\,8$ Lagrangian at the component level. The final $\mathcal{N}{=}\,8$ multiplet content is $({\bf 1, 8, 7}) \oplus ({\bf 8, 8, 0})$. As a first step to the ultimate $\mathcal{N}{=}\,4$ supefield formulation of the model, we remind a natural description of the standard and mirror $({\bf 4, 4, 0})$ multiplets in the framework of $\mathcal{N}{=}\,4, d{=}\,1$ biharmonic superspace.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答