This website requires JavaScript.

A characterization of extremal non-transmission-regular graphs by the distance (signless Laplacian) spectral radius

Jingfen LanLele Liu
Feb 2024
0被引用
0笔记
摘要原文
Let $G$ be a simple connected graph of order $n$ and $\partial(G)$ is the spectral radius of the distance matrix $D(G)$ of $G$. The transmission $D_i$ of vertex $i$ is the $i$-th row sum of $D(G)$. Denote by $D_{\max}(G)$ the maximum of transmissions over all vertices of $G$, and $\partial^Q(G)$ is the spectral radius of the distance signless Laplacian matrix $D(G)+\mbox{diag}(D_1,D_2,\ldots,D_n)$. In this paper, we present a sharp lower bound of $2D_{\max}(G)-\partial^Q(G)$ among all $n$-vertex connected graphs, and characterize the extremal graphs. Furthermore, we give the minimum values of respective $D_{\max}(G)-\partial(G)$ and $2D_{\max}(G)-\partial^Q(G)$ on trees and characterize the extremal trees.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答