This website requires JavaScript.

High-Quality Medical Image Generation from Free-hand Sketch

Quan Huu CapAtsushi Fukuda
Feb 2024
0被引用
0笔记
摘要原文
Generating medical images from human-drawn free-hand sketches holds promise for various important medical imaging applications. Due to the extreme difficulty in collecting free-hand sketch data in the medical domain, most deep learning-based methods have been proposed to generate medical images from the synthesized sketches (e.g., edge maps or contours of segmentation masks from real images). However, these models often fail to generalize on the free-hand sketches, leading to unsatisfactory results. In this paper, we propose a practical free-hand sketch-to-image generation model called Sketch2MedI that learns to represent sketches in StyleGAN's latent space and generate medical images from it. Thanks to the ability to encode sketches into this meaningful representation space, Sketch2MedI only requires synthesized sketches for training, enabling a cost-effective learning process. Our Sketch2MedI demonstrates a robust generalization to free-hand sketches, resulting in high-quality and realistic medical image generations. Comparative evaluations of Sketch2MedI against the pix2pix, CycleGAN, UNIT, and U-GAT-IT models show superior performance in generating pharyngeal images, both quantitative and qualitative across various metrics.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答