This website requires JavaScript.

Diverse Explanations from Data-driven and Domain-driven Perspectives for Machine Learning Models

Sichao LiAmanda Barnard
Feb 2024
0被引用
0笔记
摘要原文
Explanations of machine learning models are important, especially in scientific areas such as chemistry, biology, and physics, where they guide future laboratory experiments and resource requirements. These explanations can be derived from well-trained machine learning models (data-driven perspective) or specific domain knowledge (domain-driven perspective). However, there exist inconsistencies between these perspectives due to accurate yet misleading machine learning models and various stakeholders with specific needs, wants, or aims. This paper calls attention to these inconsistencies and suggests a way to find an accurate model with expected explanations that reinforce physical laws and meet stakeholders' requirements from a set of equally-good models, also known as Rashomon sets. Our goal is to foster a comprehensive understanding of these inconsistencies and ultimately contribute to the integration of eXplainable Artificial Intelligence (XAI) into scientific domains.
展开全部
机器翻译
AI理解论文&经典十问
图表提取
参考文献
发布时间 · 被引用数 · 默认排序
被引用
发布时间 · 被引用数 · 默认排序
社区问答