This website requires JavaScript.

DeepEMD: A Transformer-based Fast Estimation of the Earth Mover's Distance

Atul Kumar SinhaFrancois Fleuret
Nov 2023
The Earth Mover's Distance (EMD) is the measure of choice between point clouds. However the computational cost to compute it makes it prohibitive as a training loss, and the standard approach is to use a surrogate such as the Chamfer distance. We propose an attention-based model to compute an accurate approximation of the EMD that can be used as a training loss for generative models. To get the necessary accurate estimation of the gradients we train our model to explicitly compute the matching between point clouds instead of EMD itself. We cast this new objective as the estimation of an attention matrix that approximates the ground truth matching matrix. Experiments show that this model provides an accurate estimate of the EMD and its gradient with a wall clock speed-up of more than two orders of magnitude with respect to the exact Hungarian matching algorithm and one order of magnitude with respect to the standard approximate Sinkhorn algorithm, allowing in particular to train a point cloud VAE with the EMD itself. Extensive evaluation show the remarkable behaviour of this model when operating out-of-distribution, a key requirement for a distance surrogate. Finally, the model generalizes very well to point clouds during inference several times larger than during training.
发布时间 · 被引用数 · 默认排序
发布时间 · 被引用数 · 默认排序